Voltammetric determination of tinidazole using a glassy carbon electrode modified with single-wall carbon nanotubes.
نویسنده
چکیده
An electrochemical method based on a single-wall carbon nanotubes (SWNTs) film-coated glassy carbon electrode (GCE) was described for the determination of tinidazole. In a 0.1 M Britton-Robinson buffer with a pH of 10.0, tinidazole yields a very sensitive and well-defined reduction peak at -0.78 V (vs. SCE) on a SWNTs-modified GCE. Compared with that on a bare GCE, the reduction peak of tinidazole increases significantly on the modified GCE. Thus, all of the experimental parameters were optimized and a sensitive voltammetric method is proposed for tinidazole determination. It is found that the reduction peak current is proportional to the concentration of tinidazole over the range from 5 x 10(-8) to 4 x 10(-5) M, and that the detection limit is 1 x 10(-8) M at 3 min open-circuit accumulation. This new analysis method was demonstrated with tinidazole drugs.
منابع مشابه
Simultaneous Voltammetric Measurement of Ascorbic Acid, Epinephrine, Uric Acid and Tyrosine at a Glassy Carbon Electrode Modified with Nanozeolite-Multiwall Carbon Nanotube
In this study, incorporation of iron ion-doped natrolite nanozeolite, multi-wall carbon nanotubes into chitosan-coated glassy carbon electrode for the simultaneous determination of ascorbic acid, epinephrine, uric acid and tyrosine is studied. The results show that the combination of multi-wall carbon nanotubes and iron ion-doped natrolite zeolite causes a dramatic enhancement in the sensitivit...
متن کاملAdsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes
An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping volta...
متن کاملAdsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes
An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping volta...
متن کاملElectrochemical Sensor for Determination of Fenitrothion at Multi-wall Carbon Nanotubes Modified Glassy Carbon Electrode
A sensor, based on multi-wall carbon nanotubes modified glassy carbon electrode (MWCNT/GCE), was developed for determination of fenitrothion. Determining the surface area of MWCNT/GCE showed that this surface is three times more active than that of a glassy carbon electrode. The experimental parameters, such as the amount of MWCNTs, pH of the fenitrothion solution, preconcentration potential an...
متن کاملVoltammetric Detection of Dopamine and Ascorbic Acid Using a Multi-Walled Carbon Nanotubes/Schiff Base Complex of Cobalt-Modified Glassy Carbon Electrode
The surface of the glassy carbon electrode (GCE) is modified with the composite of new Cobalt complex with a tetradentate Schiff base ligand derived from 3-ethoxysalicylaldehyde and 4,5-dimethyl orthophenylenediamine (CoOEtSal) and multi-walled carbon nanotube (MWCNT). The electrochemical oxidation of ascorbic acid (AA) and dopamine (DA) at the modified electrode was studied using the cyclic an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 20 5 شماره
صفحات -
تاریخ انتشار 2004